-|||

MARSURF I MOBILE SURFACE ROUGHNESS MEASUREMENT

Pocket Surf IV / PS 10 / M 300 / M 300 C

IN THE PAST, THERE WAS THE FINGERNAIL TEST TODAY, THERE IS MARSURF

The test information on MARSURF
products can be found on our website:

- I Wherever surface structures influence the function, processing or appearance of components or products, careful testing is essential. But how can surfaces be tested? At the beginning of the 20th century, experts were still testing by eye and touch. They believed a practiced eye could detect features in the $\mu \mathrm{m}$ range, and even the much maligned thumbnail test delivered perfectly acceptable results. We currently live in an age of interchangeable parts and globalization, where subjective tests as such are no longer adequate. Today, computer-aided measuring instruments provide objective data. Because of this, measurement and evaluation have become considerably easier. For decades, Mahr has been a worldwide pioneer in this area, as demonstrated by the company's numerous innovations and patented solutions in the field of surface roughness metrology. The interplay between the stylus, drive and measuring setup plays a key role in influencing the quality of surface measurement tasks. Over this time, we have succeeded in perfecting the stylus method, which is now in widespread use throughout the world. We can meet even the most demanding requirements for non contact measurement, e.g. where extremely soft materials or ultra short measuring times are involved, thanks to the range of optical sensors offered in the MarSurf product family. Developed with Mahr quality, expertise and know-how, MarSurf is the solution for all your surface metrology needs.

MarSurf | Mobile Surface Roughness Measuring Instruments

DEFINITIONS

Real surface separates a body from the surrounding medium. (EN ISO 4287)
Stylus instrument enables two-dimensional tracing of a surface. The stylus is traversed normal to the surface at constant speed. (EN ISO 3274)
Traced profile is the enveloping profile of the real surface acquired by means of a stylus instrument. The traced profile consists of form deviations, waviness and roughness components. (EN ISO 3274, DIN 4760)
Parameters usually are defined over the sampling length. An average parameter estimate is calculated by taking the arithmetic mean of the parameter estimates from all the individual sampling lengths. For roughness profile parameters, the standard number of sampling lengths is five.
For curves and related parameters (e.g. material ratio), the basis for the calculation of the parameters' values is the evaluation length. (EN ISO 4288)
Traversing length I_{t} is the overall length traveled by the stylus when acquiring the traced profile. It is the sum of pre-travel, evaluation length I_{n}, and post-travel.
Cutoff $\lambda_{\mathbf{C}}$ of a profile filter determines which wavelengths belong to roughness and which ones to waviness. Sampling length I_{r} is the reference for roughness evaluation. Its length is equal to the cutoff wavelength λ_{C}. The sampling lengths $I_{\mathbf{p}}$ and $\mathbf{I}_{\mathbf{w}}$, respectively, are the reference lengths for the P-profile and the W-profile evaluation.
Evaluation length I_{n} is that part of the traversing length I_{t} over which the values of surface parameters are determined. The standard roughness evaluation length comprises five consecutive sampling lengths.
Pre-travel is the first part of the traversing length I_{t}.
Post-travel is the last part of the traversing length I_{t}. Pre-travel and post-travel are required for phase correct filtering.

$\mathrm{R}_{\mathrm{a}}, \mathrm{R}_{\mathbf{q}}$ Mean Roughness

EN ISO 4287, ASME B46.1
Roughness average \mathbf{R}_{a} is the arithmetic average of the absolute values of the roughness profile ordinates.

$$
\mathrm{R}_{\mathrm{a}}=\frac{1}{1} \int_{0}^{1}|\mathrm{Z}(\mathrm{x})| \mathrm{dx}
$$

Root mean square (RMS) roughness $\mathbf{R}_{\mathbf{q}}$ is the root mean square average of the roughness profile ordinates.

$$
\mathrm{Rq}=\sqrt{\frac{1}{1} \int_{0}^{1} \mathrm{Z}^{2}(\mathrm{x}) \mathrm{dx}}
$$

$Z(x)=$ profile ordinates of the roughness profile.
R_{a} is also called AA and CLA, R_{q} also RMS.

$\mathbf{R}_{\mathbf{m r}}, \mathbf{t}_{\mathbf{p}}$ Material Ratio

EN ISO 4287, ASME B46.1
Material ratio $\mathbf{R}_{\mathbf{m r}}$ (ASME: bearing length ratio t_{p}) is the ratio expressed in percent of the materialfilled length to the evaluation length I_{n} at the profile section level c.

$$
R_{m r}=\left(L_{1}+L_{2}+\ldots+L_{n}\right) 100[\%]
$$

The profile section level c is the distance between the evaluated intersection line and the specified reference line $\mathrm{C}_{\text {ref- }}$
Material ratio curve (Abbott-Firestone curve) shows the material ratio $\mathbf{R}_{\mathbf{m r}}$ as a function of the profile section level c.
The material ratio can also be evaluated on the P - or the W-profile (P_{mr} or \mathbf{W}_{mr}).

$\mathbf{R}_{\mathbf{p}}$ Peak Height, $\mathbf{R}_{\mathbf{v}}$

EN ISO 4287, ASME B46.1
$\mathbf{R}_{\mathbf{p}}$ is the height of the highest profile peak of the roughness profile within one sampling length.
According to ASME, the R_{p} mean value (average calculated over the evaluation length) is called $R_{p m}$.
$\mathbf{R}_{\mathbf{V}}$ is the depth of the deepest profile valley of the roughness profile within one sampling length So far, the parameter symbol R_{m} was used in place of R_{V}.

The sum of $R_{p}+R_{v}$ is the single roughness depth $R_{z i}$.

$\mathrm{R}_{\mathrm{k},} \mathrm{R}_{\mathrm{pk}}, \mathrm{R}_{\mathrm{vk}}, \mathrm{Mr}_{\mathrm{r} 1}, \mathrm{M}_{\mathrm{r} 2}$
EN ISO 13565-1 and -2
The roughness profile as per 13565-1 is generated by a special filtering technique minimizing profile distortions due to deep valleys in plateau profiles. A straight line divides the Abbott-Firestone curve into three areas from which the parameters are then computed as per 13565-2:
Core roughness depth $\mathbf{R}_{\mathbf{k}}$ is the depth of the roughness core profile.
Reduced peak height $\mathbf{R}_{\mathbf{p k}}$ is the mean height of the peaks protruding from the roughness core profile. Reduced valley depth $\mathbf{R}_{\mathbf{v k}}$ is the mean depth of the valleys protruding from the roughness core profile.
$\mathbf{M}_{\mathbf{r} 1}$ and $\mathbf{M}_{\mathbf{r} 2}$ are the smallest and the highest material ratios of the roughness core profile.

Selection of Cutoff λ_{c}

EN ISO 4288, ASME B46.1

Periodic Profiles	Nonperiodic Profiles	Cutoff	Sampl./ Eval. Length	
$\mathbf{R}_{\mathbf{s m}}$ (mm)	$\mathbf{R}_{\mathbf{z}}$ $(\mu \mathrm{m})$	$\mathbf{R}_{\mathbf{a}}$ $(\mu \mathrm{m})$	$\lambda_{\mathbf{c}}$ (mm)	$\mathbf{I}_{\mathbf{r}} / \mathrm{I}_{\mathrm{n}}$ (mm)
over 0,013 up to 0,04	up to 0,1 over 0,1	up to $\mathbf{0 , 0 2}$	$\mathbf{0 , 0 8}$	$\mathbf{0 , 0 8 /}$ $\mathbf{0 , 4}$
over 0,04 up to 0,13	up to 0,5 over 0,5	over 0,02 up to 0,1	$\mathbf{0 , 2 5}$	$\mathbf{0 , 2 5 /}$ $\mathbf{1 , 2 5}$
over 0,13 up to 0,4	up to 10 over 10	over 0,1 up to 2	$\mathbf{0 , 8}$	$\mathbf{0 , 8 / \mathbf { 4 }}$
over 0,4 up to 1,3	up to 50 over 50	over 2 up to 10	$\mathbf{2 , 5}$	$\mathbf{2 , 5 /}$
over 1,3 up to 4	up to 200	over 10 up to 80	$\mathbf{8}$	$\mathbf{8 / 4 0}$

$\mathbf{R}_{\mathbf{Z}}, \mathbf{R}_{\text {max }}$ Roughness Depth
 EN ISO 4287, ASME B46.1

Single roughness depth $\mathbf{R}_{\mathbf{z i}}$ is the vertical distance between the highest peak and the deepest valley within a sampling length.

Mean roughness depth $\mathbf{R}_{\mathbf{z}}$ is the arithmetic mean value of the single roughness depths $\mathbf{R}_{\mathbf{z i}}$ of consecutive sampling lengths:

$$
R_{z}=\frac{1}{n}\left(R_{z 1}+R_{z 2}+\ldots+R_{z n}\right)
$$

The R_{z} definition is identical to the definition in DIN 4768:1990. The ten point height R_{z} as well as the parameter symbol R_{y} of ISO 4287:1984 have been canceled.
Maximum roughness depth $R_{\text {max }}$ is the largest single roughness depth within th e evaluation length
(cf. EN ISO 4288; $R_{\max }$ is also called $R_{z 1 \text { max }}$)

$\mathbf{R}_{\mathrm{sm}}, \mathbf{R}_{\Delta \mathbf{q}}$

EN ISO 4287, ASME B46.1
Mean width of profile elements $\mathbf{R}_{\mathbf{s m}}$ is the arithmetic mean value of the widths of profile elements of the roughness profile.

$$
\mathrm{RSm}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Xsi} \quad \begin{aligned}
& \text { A profile element consists of a } \\
& \text { profile peak and an adjacent } \\
& \text { profile valley. } \\
& \\
& \\
& A_{\mathrm{r}} \text { is an older designation for } \mathrm{R}_{\mathrm{sm}} .
\end{aligned}
$$

Root mean square slope $\mathbf{R}_{\Delta q}$ is the root mean square average of all local profile slopes.

$$
R \Delta q=\sqrt{\frac{1}{1} \int_{0}^{1}\left(\frac{d z}{d x}\right)^{2} d x}
$$

The local profile slope is computed via a leveling function in order to reduce the influence of noise.

MarSurf | Mobile Surface Roughness Measuring Instruments

 overview

6 MarSurf I Mobile Surface Roughness Measuring Instruments

Pocket Surf ${ }^{\circledR}$ IV Portable Surface Roughness Gage

FEATURES

- Durable cast aluminum housing provides accurate and reliable surface finish gaging
- Measures four switch selectable parameters: Ra, Rmax/Ry, Rz
- Reviews parameters after measurement is complete
- Selectable traverse length 1,3 or 5 cut-offs of $0,8 \mathrm{~mm} / 0.030$ in
- Operates in horizontal, vertical and upside down positions
- Four switchable probe positions - axial (folded) or at $90^{\circ}, 180^{\circ}$ or 270°
- Difficult-to-reach surfaces (inside and outside diameters)

MarConnect data output for SPC-processing that is compatible with common data processing systems

- Easy-to-read LCD readout
- Roughness within half a second after the surface is traversed
- Out-of-range (high or low) and battery low signals displayed
- Improved digital calibration process eliminate scandrivers and potentiometers to simplify and enhance the calibration process

Improved battery life and easy-to-replace standard 9 V battery

TECHNICAL DATA

Dimensions		$140 \mathrm{~mm} \times 76 \mathrm{~mm} \times 25 \mathrm{~mm} / 5.5 \mathrm{in} \times 3 \mathrm{in} \times 1$ in
Weight	$435 \mathrm{~g} / 14 \mathrm{oz}$	
Measuring Ranges	Ra_{a}	$0,03 \mu \mathrm{~m}$ to $6,35 \mu \mathrm{~m} / 1 \mu \mathrm{in}$ to $250 \mu \mathrm{in}$
	R_{y}	$0,2 \mu \mathrm{~m}$ to $25,3 \mu \mathrm{~m} / 8 \mu \mathrm{in}$ to $999 \mu \mathrm{in}$
	$\mathrm{R}_{\text {max }}$	$0,2 \mu \mathrm{~m}$ to $25,3 \mu \mathrm{~m} / 8 \mu \mathrm{in}$ to $999 \mu \mathrm{in}$
	R_{z}	$0,2 \mu \mathrm{~m}$ to $25,3 \mu \mathrm{~m} / 8 \mu \mathrm{in}$ to $999 \mu \mathrm{in}$
		$0,01 \mu \mathrm{~m} / 1 \mu \mathrm{in}$
Display Resolution		Meets ASME-B46.1, ISO, DIN standards and MIL specifications
Measurement Accuracy		LCD with, "Battery low" signal; "H" and "L"
(measured values out-of-range)		

TECHNICAL DATA

POCKET SURF SETS		
Order No.	2191800	2191802
Description	90° probe, $10 \mu \mathrm{~m}$ radius, PMD90101 certified specimen, including test certificate	90° probe, $5 \mu \mathrm{~m}$ radius, PMD-90101 certified specimen, including test certificate
Model No.	EGH-1019	EGH-1026

A Pocket Surf Kit is furnished complete in a fitted case, and includes a Pocket Surf unit with a general purpose probe** and a $3,2 \mu \mathrm{~m} / 125 \mu$ in (nominal) reference specimen**, 9 Volt battery and riser plate.
** Part numbers listed in table above

PROBING AND TRAVERSE LENGTHS			
Parameters	Traverse Length (Nominal)	Evaluation Length	Number of Cutoffs/ Switch Position*
R_{a} / R_{y}	$2,0 \mathrm{~mm} / 0.075$ in	$0,8 \mathrm{~mm} / 0.030 \mathrm{in}$	1
	$3,5 \mathrm{~mm} / 0.135 \mathrm{in}$	$2,4 \mathrm{~mm} / 0.090$ in	3
$\mathrm{R}_{\mathrm{a}} / \mathrm{R}_{\mathrm{z}} / \mathrm{R}_{\text {max }}$	$5,0 \mathrm{~mm} / 0.195$ in	$4,0 \mathrm{~mm} / 0.150 \mathrm{in}$	5
Traverse Speed	$5,08 \mathrm{~mm} / 0.2$ in per second		
Cutoff	$0,8 \mathrm{~mm} / 0.030$ in ASME 2 RC-filter		
Probe Type	Piezoelectric		
Maximum Stylus Force	15.0 mN / 1500 mgf		
Power	Consumer type alkaline battery 9 Volt		
Battery Capacity	Approx. 2,500 measurements, depending on frequency of use and output option		
Operating Temperature	$10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C} / 50^{\circ} \mathrm{F}$ to $113^{\circ} \mathrm{F}$		
Storage Temperature	$-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C} /-4{ }^{\circ} \mathrm{F}$ to $149{ }^{\circ} \mathrm{F}$		

-

Pocket surf set

* Other cutoff/switch positions may be used

4346023

4346020

MarConnect - USB ready

The Pocket Surf IV^{\circledR} employs the MarConnect interface from Mahr. MarConnect simplifies data transmission to a PC and enables quick and universal assembly of a multiple measuring station.

| Order No. | Description | Model No. |
| :--- | :---: | :---: | :---: |
| 4346023 | Data connection cable USB $(2 \mathrm{~m})$ incl. MarCom Standard Software | 2000 USB |
| 4346020 | Data connection cable Opto RS232C $(2 \mathrm{~m})$, with SUB-D jack 9-pin | 2000 r |
| 4102552 | MarCom Professional 4.0 Software allows for up to 68 wired devices | - |
| 4102551 | Marcom Standard 3.1 Software allows for 1 wired device | - |

Accessories for data processing: see Dimensional Metrology Catalog, Chapter 11

Pocket Surf ${ }^{\circledR}$ IV Portable Surface Roughness Gage
Probes

	General Purpose Probes	
Order No.	Description	Application
EGH-1019	With a 90° conical diamond stylus,	For most surface roughness applications
EGH-1026	With a 90° conical diamond stylus,	
$5 \mu \mathrm{~m} / 0.0002$ in radius*		

Transverse Chisel Probe			
Order No.	Description		
EGH-1020-W1	For gaging sharp edges or small OD's where probe is aligned (in 180° or closed position) to axis of traverse, 90° sapphire chisel, $10 \mu \mathrm{~m} / 0.0004 \mu \mathrm{in}$ radius		

| | Parallel Chisel Probe |
| :--- | :---: | :---: |
| Order No. | Description |
| EGH-1020-W2 | For gaging sharp edges or small OD's where probe is
 perpendicular (in 90° or 270° position) to axis of traverse. 90°
 sapphire chisel, $10 ~$ $\mathrm{~mm} . / 0.0004 \mu$ in radius. |
| EAS-2421 | Also used with V-Block fixture for OD's smaller than |
| $6,35 \mathrm{~mm} / 0.25$ in | |

	Small Bore Probe	
Order No.	Description	Application
EGH-1021	With a 90° conical diamond stylus,	For gaging small bores $(3,2 \mathrm{~mm} / 0.125$ in
	$10 \mu \mathrm{~m} / 0.0004$ in radius	minimum ID) up to EGH-1027
	With a 90° conical diamond stylus,	
$5 \mu \mathrm{~m} / 0.0002$ radius *	a depth of $19 \mathrm{~mm} /$ 0.75 in	

Groove Bottom Probe

Order No.

Description

Measuring the bottom of grooves, recesses and small holes to depths of $6,35 \mathrm{~mm} / 0.25 \mathrm{in}$, used for short lands and shoulders 90° conical diamond stylus, $10 \mu \mathrm{~m} / 0.0004 \mu$ in radius

Note: Small bore and groove bottom probes can only be used in 180°
 position with the Pocket Surf unit supported in a height stand or other fixture

* Yellow dot at connector end signifies $5 \mu \mathrm{~m} / 0.0002 \mu \mathrm{in}$ radius

Applications and Accessories

V-Block Adapter Kit
Order No. EAS-2739

Attaches to bottom of Pocket Surf unit, permitting convenient, handheld measurements of hard-to-reach cylindrical surfaces, such as crankshaft journals without having to fix the work piece; suitable for parts with diameters from 5,0 $\mathrm{mm} / 0.19$ in to $125 \mathrm{~mm} / 5 \mathrm{in}$

Portable V-Block Fixture

Order No. EAS-2421
For measuring small parts with outside diameters from $3,1 \mathrm{~mm} / 0.125$ in to $25 \mathrm{~mm} / 1$ in for lengths of $25 \mathrm{~mm} / 1$ in minimum includes PS-145 setting pin

Bottom Plate
 Order No. EAS-2584

For measuring cylindrical workpieces too short (less than $89 \mathrm{~mm} / 3.5$ in long) for the closed probe position; for workpieces with short OD's
from 6,35 mm / 0.25 in (minimum $38 \mathrm{~mm} / 1.5$ in long)

Mounting Bracket for Height Gages

 Order No. EAS-3048For mounting the Pocket Surf to most standard height gages; the bracket includes a rectangular bar that is $11,5 \mathrm{~mm}$ $x 6,35 \mathrm{~mm}$ (0.45 in $\times 0.25 \mathrm{in}$) to fit the holder of the height gage and a swivel feature is included to permit the Pocket Surf to

be set anywhere within a 360° rotation

Height Stand with Swivel Order No. 2236687

Mobile Surface Roughness Measuring Instrument MarSurf PS 10

FEATURES

- Small and lightweight
- Large illuminated 4.3 in TFT touch display
- Display can be rotated
- Simple to operate
- Increased flexibility with the removable drive unit
- Start button is also the home button for direct access to the start screen
- Direct access to your customized functions with favorites
- 31 parameters offer same range of functions as a laboratory instrument
- Data is saved on the device, e.g. TXT, X3P, CSV and PDF file
- Evaluation of most common parameters conforming to
standards and in accordance to ISO /JIS and parameter lists
- Integrated, removable roughness standard for the standard pick-up PHT 6-350
- Dynamic calibration function
- Select standards (DIN-ISO/JIS/ ASME /MOTIF)
- Automatic cutoff selection patented to ensure correct measuring results
- Individual sampling lengths and shortened cutoff can be selected
- Setting of unsymmetric intersection lines for peak count calculation
- Phase-correct profile filter (Gaussian filter) acc. To DIN EN ISO 16610-21 (before DIN EN ISO 11562), special filter acc. to

DIN EN ISO 13565-1, Is-filter acc. to DIN EN ISO 3274 (disengageable)

- Tolerance monitoring
- Lock settings and/or password protection
- Date and/or time of measurement
- Integrated memory to store approx. 500,000 results, 3,900 profiles and 1,500 PDF files
- Data transmission via the USB interface to a PC or via micro SD-Card
- MarConnect interface, to connect hardware via the MarCom Software
- Built-in rechargeable battery can be used for up to 1,200 measurements before being recharged

SUPPLIED WITH:

- MarSurf PS 10 base unit
- Drive unit (removable)
- 1 standard pick-up PHT 6-350 (conforming to standards)
- Built-in battery
- Roughness standard integrated (removable) into base unit with Mahr calibration certificate
- Pick-up protection
- Charger / power source with

3 mains power source adapters

- Operating instructions
- Carrying case with shoulder strap
- USB cable
- Extension cable drive unit
- Height adjustment accessory (integrated)

TECHNICAL DATA

Mobile Surface Roughness Measuring Instrument MarSurf M 300 A Step Ahead

FEATURES

- Bluetooth wireless connection between the evaluation unit and drive unit (up to 4 m)
- Bright, illuminated color display
- Automatic selection of filter and traversing length conforming to standards
- Integrated thermal graphics printer of high print quality
- Print the R-profile via the thermal graphics printer
- Printed log by pressing a button or automatically
- Data transfer of results and profiles via USB interface to your hardware
- Evaluation of most common parameters conforming to
standards and in accordance to ISO/JIS as well as characteristic curves, parameter lists (e.g. material ratio curve)
- Printing of R-profile (ISO/ ASME/JIS), P-profile (MOTIF), material ratio curve, measuring record
- Measuring units ($\mu \mathrm{m} / \mu \mathrm{in}$) and standards (ISO/JIS/ASME/ MOTIF) are selectable
- Tolerance monitoring
- Integrated memory for the results of up to 40,000 measurements and 30 profiles
- Setting of unsymmetric intersection lines for peak count calculation
- Individual sampling lengths and short cutoff can be selected
- Key pad lock and/or password protection for instrument settings
- Built-in rechargeable battery with power management
- Integrated roughness standard for the standard pick-up PHT 6-350
- Dynamic calibration function
- Date and/or time of measurement
- MarSurf PS1/M 300 Explorer Software for recording measurements (optional)

SUPPLIED WITH:

- Evaluation unit M 300, drive unit RD 18 with integrated roughness standard, standard pick-up PHT 6-350/2 $\mu \mathrm{m}$ (conforming to standards),
- Charger / mains adapter with 3 mains power adapters, height adjustment accessory, pick-up protection, pick-up protection with prismatic underside, end face V-Blockblock, $2 \times$ USB cables, 1 roll of thermal paper, shoulder strap, carrying case, Mahr calibration certificate, operating instructions

Mobile Surface Roughness Measuring Instrument MarSurf M 300 C

FEATURES

- Bright, illuminated color display
- Automatic selection of filter and traversing length conforming to standards
- Integrated thermal graphics printer of high print quality
- Easy-to-use operator guidance
- Large color display
- Printing of R-profiles with the thermo printer
- Printed log either by pressing a button or automatically
- Data transfer of results and profiles via USB interface to your hardware
- Evaluation of most common parameters conforming to standards and in accordance to $\mathrm{ISO} / \mathrm{JIS}$ as well as characteristic curves, parameter lists (e.g. material ratio curve)
- Printing of R-profile (ISO/ ASME/JIS), P-profile (MOTIF), material ratio curve measuring record
- Measuring units ($\mu \mathrm{m} / \mu \mathrm{inch}$) and standards (ISO/JIS/ASME/ MOTIF) are selectable
- Integrated memory for the results of up to 40,000 measurements and 30 profiles
- Tolerance monitoring
- Setting of unsymmetric intersection lines for peak count calculation
- Cylindrical drive unit with handheld V-Block and PHT pick-up protection
- Individual sampling lengths and short cutoff can be selected
- Lock instrument settings
- Date and/or time of measurement
- Can be expanded to be an stationary measuring station
- MarSurf PS1/M 300 Explorer Software for recording measurements (option)

SUPPLIED WITH:

- Evaluation unit M 300 C, cylindrical drive unit RD 18 C incl. 1.8 m data connection cable, handheld V-Block with height adjustable feet, standard pick-up PHT $6-350 / 2 \mu \mathrm{~m}$ (conforming to standards), roughness standard PRN 10 with Mahr calibration certificate, 1 roll of thermal paper, pick-up protection with prismatic underside, dia. 8 mm mounting clamp for drive unit, charger / mains adapter with 3 mains power adapters, $1 \times$ USB cable (for connection to a PC), shoulder strap, carrying case, operating instructions

14 MarSurf I Mobile Surface Roughness Measuring Instruments

Mobile Surface Roughness Measuring Instrument MarSurf M 300 / M 300 C
TECHNICAL DATA

Order No.	M 300 Set	6910401 (2 $\mu \mathrm{m}$ radius tip)
Order No.		6910411 (5 $\mu \mathrm{m}$ radius tip)
Order No.	M 300C Set	6910431 (2 $\mu \mathrm{m}$ radius tip)
Order No.		6910438 (5 $\mu \mathrm{m}$ radius tip)
Measuring Principle		Stylus method
Traversing Speed		0,5 mm/s (0.02 in/s)
Measuring Range		$350 \mu \mathrm{~m}$ (0.014 in)
Profile Resolution		8 nm
Filter		Gaussian filter, Ls-Filter (switchable)
Cutoff		$0,25 \mathrm{~mm}, 0,8 \mathrm{~mm}, 2,5 \mathrm{~mm}$ ($0.010 \mathrm{in}, 0.032 \mathrm{in}, 0.100 \mathrm{in}$)
Short Cutoff		Selectable
Traversing Lengths as per DIN / ISO / ASME / JIS		1,75 mm, 5,6 mm, 17,5 mm (0.070 in, $0.2242 \mathrm{in}, 0.700 \mathrm{in}$)
Traversing Lengths as per EN ISO 12085 (MOTIF)		$1 \mathrm{~mm}, 2 \mathrm{~mm}, 4 \mathrm{~mm}, 8 \mathrm{~mm}, 12 \mathrm{~mm}, 16 \mathrm{~mm}$
Evaluation Lengths		$1,25 \mathrm{~mm}, 4 \mathrm{~mm}, 12,5 \mathrm{~mm}$ ($0.05 \mathrm{in}, 0.16 \mathrm{in}, 0.5 \mathrm{in}$)
Number of Sampling Lengths Selectable:		1-5
Parameters	DIN / ISO	Ra, Rq, Rz, Rmax, Rp, Rv, Rpk, Rk, Rvk, Mr1, Mr2, A1, A2, Vo, Rt, R3z, RPc, Rmr, RSm, Rsk, R, AR, Rx, W, CR, CF, CL
	JIS	Ra, Rq, Ry (equiv. to Rz), RzllS, Rp, Rv, Rpk, Rk, Rvk, Mr1, Mr2, A1, A2, Rt, tp (equiv. to Rmr), RSm, Rsk, S, R, AR, Rx, W, CR, CF, CL
	ASME	RpA, Rpm, Rmr, RSm, Rsk
	MOTIF	R, AR, Rx, W, CR, CF, CL
Vertical Scale		Automatic/Selectable
Horizontal Scale		Depending on the cutoff
Record Contents		R-profile, MRK, P-profile (MOTIF), results
Printing		Automatic/Manual, record with time
Surface Hardness		Ideal for surface hardness >50 shore
Calibration Function		Dynamic
Memory		Integrated memory
		Storage up to 40,000 measurements and up to 30 profiles
Measuring Units		$\mu \mathrm{m} / \mathrm{\mu} \mathrm{in}$ selectable
Languages Selectable		English, German, French, Italian, Spanish, Portuguese, Dutch, Swedish, Czech, Polish, Russian, Japanese, Chinese, Korean, Turkish
Blocking Instrument Settings		Yes
Password Protection		Yes
LCD		High resolution color display, 3.5 in, 320×240 pixels
Printer		Thermal printer, 384 points/horizontal line, 20 characters/line
Printing Speed		Approx. 6 lines/second corresponds to approx. $25 \mathrm{~mm} / \mathrm{s}$ ($1 \mathrm{in} / \mathrm{s}$)
Thermal Paper		Dia. $40,0 \mathrm{~mm}-1,0 \mathrm{~mm}$, width $57,5 \mathrm{~mm}-0,5 \mathrm{~mm}$, Coated
Interface		USB, MarConnect
Power Supply		NiMH battery, capacity: approx. 500 measurements (depending on the number and length of record printouts), plug-in power pack with Three power source plugs, for input voltages from 90 V to 264 V
Power Management		Yes
Connections		Drive unit, power pack, USB, MarConnect
Protection Class	M 300 / M 300 C	IP 42
	RD 18 / RD 18 C	IP 40
Temperature Range for Storage		$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(5^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Temperature Range for operation		$+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
Relative Humidity		30% to 85 \%
Dimensions (x W $\times \mathrm{H}$)	M 300 / M 300 C	$190 \mathrm{~mm} \times 140 \mathrm{~mm} \times 75 \mathrm{~mm}$ ($7.5 \mathrm{in} \times 5.5 \mathrm{in} \times 3 \mathrm{in}$)
Dimensions ($\mathrm{x} \times \mathrm{W} \times \mathrm{H}$)	RD 18	$130 \mathrm{~mm} \times 70 \mathrm{~mm} \times 50 \mathrm{~mm}$ ($5.1 \mathrm{in} \times 2.7 \mathrm{in} \times 2 \mathrm{in}$)
Dimensions ($\mathrm{x} \times \mathrm{D}$)	RD 18 C	$139 \mathrm{~mm} \times 26 \mathrm{~mm}$ ($5.5 \mathrm{in} \times 1 \mathrm{in}$)
Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$)	RD $18 \mathrm{C}^{*}$	$82 \mathrm{~mm} \times 34 \mathrm{~mm} \times 59 \mathrm{~mm}$ ($3.2 \mathrm{in} \times 1.3 \mathrm{in} \times 2.3 \mathrm{in}$)
Weight	M 300 / M 300 C	Approx. 1 kg
	RD 18	Approx. 300 g
	RD 18 C	Approx. 165 g
	RD $18 \mathrm{C}^{*}$	Approx. 55 g

[^0]
Drive Unit MarSurf RD 18

воотн тооtн technology

- Unique cable-free connection between evaluation unit and drive unit
- Connection of several drive units to only one evaluation unit

Probe ordered separately; not supplied with probe protector shown

FEATURES

- Well-proven PHT skid probes are implemented in the drive unit
- Ability to connect via a cable

SUPPLIED WITH:

- Drive unit RD 18 with integrated roughness standard

TECHNICAL DATA
\(\left.$$
\begin{array}{|l|l|}\hline \text { Order No. } & \mathbf{6 9 1 0 4 0 3} \\
\hline \text { Tracing Direction } & \text { Longitudinal } \\
\hline \text { Traversing Length } & \text { Adjustable on M } 300 \\
\hline \text { As per DIN/ISO } & \begin{array}{l}1,75 \mathrm{~mm}, 5,6 \mathrm{~mm}, 17,5 \mathrm{~mm} \\
(0.07 \mathrm{in}, 0.22 \mathrm{in}, 0.7 \mathrm{in})\end{array} \\
\hline \text { As per EN ISO 12085 } & \begin{array}{l}1 \mathrm{~mm}, 2 \mathrm{~mm}, 4 \mathrm{~mm}, 8 \mathrm{~mm}, 12 \\
\mathrm{~mm}, 16 \mathrm{~mm}\end{array}
$$

\hline Traverse Speed \& 0,5 \mathrm{~mm} / \mathrm{s}\end{array}\right]\)| Dimensions |
| :--- |
| (w/o pick-up protection) |
| Bluetooth Range |

Drive Unit MarSurf RD 18 C2 for Transverse Tracing for M $\mathbf{3 0 0}$ C / PS 10

FEATURES

- Transverse scanning
- The well-proven PHT-skid probes are implemented in the drive unit
- The drive unit RD 18 C2 is attached in the same way as the RD 18
- The range of application offered by the mobile MarSurf M 300 C and MarSurf PS 10 is broadened, by being able to use both types of drive units

SUPPLIED WITH:

- Drive unit RD 18 C2 with integrated roughness standard
- Pick-up protection with prismatic underside, pick-up protection and a screwdriver
Probe ordered separately

TECHNICAL DATA

Order No.	$\mathbf{6 9 1 0 4 2 6}$
Tracing Direction	Transverse
Traversing Length	Adjustable on M 300
As per DIN/ISO	$1,75 \mathrm{~mm}, 5,6 \mathrm{~mm}$ $(0.07 \mathrm{in}, 0.22 \mathrm{in})$
As per EN ISO $\mathbf{1 2 0 8 5}$	$1 \mathrm{~mm}, 2 \mathrm{~mm}, 4 \mathrm{~mm}$
Traverse Speed	$0,1 \mathrm{~mm} / \mathrm{s} \mathrm{and} 0,5 \mathrm{~mm} / \mathrm{s}$
Dimensions (w/o pick-up protection)	Dia. $24 \mathrm{~mm}, \mathrm{~L}=142 \mathrm{~mm}$

Optional probes for MarSurf PS 10 / M 300 / M 300 C

PROBES FOR VARIOUS MEASURING TASKS
The P Series probes are characterized by special construction features: - Reliable inductive converter

- Stylus tip geometry as per EN ISO 3274, standard $2 \mu \mathrm{~m} / 90^{\circ}$
- Measuring force of approx. 0.7 mN (as per EN ISO 3274)
- Robust, rigid housing
- Self-aligning, elastic bearings
- Reliable plug and socket connections

Order No.	6111523
System	Dual-skid pick-up with spherical skid
Skid Radius	In traversing direction 50 mm (1.969 in), at right angles 3 mm (0.118 in)
Contact Point	$4,5 \mathrm{~mm}(0.177 \mathrm{in})$ in front of the stylus
Specification	For measurements on metal sheets and roller surfaces according to DIN EN 10049 (SEP).min. workpiece length = tracing length +5 mm (0.197 in)
Measuring Range	$150 \mu \mathrm{~m}(0.006 \mu \mathrm{in})$

Pick-up extensions PHT for P probes - Pick-up extensions
/ Adapters / Accessories

MarSurf PS 10 / M 300 Accessories

MarStand measuring stands offer high stability which ensures precise measurements

- Rugged base ensures both maximum stability and sturdiness
- Upper side of the base has a convenient hand grip
- Support arm can be finely adjusted

Measuring Stand MarStand 815 GN	
Order No.	Total Height with Base
4413000	300 mm
$\mathbf{4 4 1 3 0 0 1}$	500 mm
$\mathbf{4 4 1 3 0 0 5}$	750 mm

8 mm mount PS 10 / RD 18 C
Stand Adapter for MarSurf PS 10 / RD 18 C

Order No. Description
6910435
Stand adapter

The handheld support with its multiple contact surfaces offers various application possibilities

Measuring Stand MarStand 815 GN	
Order No.	Total Height with Base
4413000	300 mm
4413001	500 mm
4413005	750 mm

Pick-up Protection for	
PS 10 / RD 18 / RD 18 C	
Order No.	Description
$\mathbf{6 8 5 0 7 1 6}$	Pick-up protection, steel
$\mathbf{6 8 5 0 7 1 5}$	Pick-up protection with header V-Block, steel
$\mathbf{7 0 2 8 5 3 2}$	Pick-up protection, plastic*
$\mathbf{7 0 2 8 5 3 0}$	Pick-up protection header V-Block, plastic**

[^1]MarSurf PS 10 / M 300 / M 300 C Accessories

Illustration: 6910201
Measuring stand not included

Accessories for measuring stands

Mount for Measuring Stand ST	
Order No.	Description
$\mathbf{6 9 1 0 2 0 1}$	Mount for MarSurf PS 10 / RD 18 The RD 18 drive unit can be pivoted and locked in any positi- on in the mount ($\left.\pm 15^{\circ}\right)$
$\mathbf{6 8 5 1 3 0 4}$	Mount for MarSurf RD 18 C The RD 18 C drive unit can be pivoted and locked in any positi- on in the mount ($\left.\pm 15^{\circ}\right)$

	Mount for Stand ST				
	Order No.	Description	Height Adjustment	Dimensions (L x W x H)	Weight
	6710803	Measuring Stand ST-D with Metal Stand	0 to 300 mm , with a hand wheel	$\begin{gathered} 175 \mathrm{~mm} x \\ 190 \mathrm{~mm} \text { x } \\ 385 \mathrm{~mm} \end{gathered}$	Approx. 3 kg
	6710806	Measuring Stand ST-F - Granite plate - Required measuring height can be adjusted with a hand wheel for convenient and accurate positioning of the drive unit	0 to 300 mm , with a hand wheel	$\begin{aligned} & 400 \mathrm{~mm} \times 300 \\ & \mathrm{~mm} \times 415 \mathrm{~mm} \end{aligned}$	Approx. 35 kg
	6710807	Measuring Stand ST-G - Granite plate - 10 mm (0.39 in) T-slot for mounting work pieces -Required measuring height can be adjusted with a hand wheel for convenient and accurate positioning of the drive unit	0 to 300 mm , with a hand wheel	$\begin{aligned} & 500 \mathrm{~mm} \times 300 \\ & \mathrm{~mm} \times 415 \mathrm{~mm} \end{aligned}$	Approx. 35 kg

-
814 Sh

FUNCTIONS

- RESET (set the display to zero for relative measurement), ABS (switch between relative and absolute measurement), mm/inch, ReferenceLock/Unlock, PRESET (to enter a numerical value), DATA (data transmission via connection cable), Auto-ON/OFF
- Max. measuring speed $1,5 \mathrm{~m} / \mathrm{s}(60 \mathrm{in} / \mathrm{s})$
- High contrast LCD with 12 mm sized digits
- Sturdy heavy-duty base, easy-to-handle
- Hardened and lapped contact surface that produces a smooth and even movement
- Slide and beam made of hardened stainless steel
- Hand crank for positioning and measuring
- Fine adjustment
- Locking screw
- Interchangeable scriber point, carbide tipped

SUPPLIED WITH:

- Scriber point
- Cardboard box
- Battery
- Operating instructions

Height Measuring and Scribing Istrument Digimar 814 SR for MarSurf PS 10 / RD 18
Order No. Description Model No.

4426100 Measuring range 350 mm
814 SR

4426101 Measuring range 600 mm
814 SR

MarSurf PS 10 / M 300 / M 300 C Accessories

Parallel Vise PPS and Stand PKS		
Order No.	6710604	6710610
Description	- PPS for mounting rectangular and cylindrical workpieces	PKS - vise above with stand/ball socket joint for easy positioning
Jaw Width	$\begin{aligned} & 80 \mathrm{~mm} \times 100 \mathrm{~mm} \times 40 \mathrm{~mm} \\ & (3.91 \mathrm{in} \times 3.15 \mathrm{in} \times 1.58 \mathrm{in}) \end{aligned}$	
Jaw Height	$70 \mathrm{~mm} / 2.76$ in	
Span	$25 \mathrm{~mm} / 0.984$ in	
Total Height	$58 \mathrm{~mm} / 2.28$ in	

Mini Precision Vise 109 PS as set	
Order No.	$\mathbf{4 2 4 6 8 1 9}$
	- Mini precision vises - Prism jaws, carrier plates, stands and mini dividing attachment depends on version
Description	Plastic case included
Width of Jaws	$15 \mathrm{~mm} / 25 \mathrm{~mm} / 35 \mathrm{~mm}$

Order No.

Description

2240360 PRN10-2N - Same as above but with certificate traceable to NIST using $2 \mu \mathrm{~m}$ probe
2249863 PRN10-5N - Same as above but with certificate taceable to NIST using $5 \mu \mathrm{~m}$ probe

2252018

PRN10-10N - Same as above but with certificate traceable to NIST using $10 \mu \mathrm{~m}$ probe

MarCom Software for PS 10 / M 300 / M 300 C

MARCOM PROFESSIONAL SOFTWARE

- Measured values can be directly transferred into MS Excel (from version 97) or into a text file or key code
- The measured values from each instrument can be sent to a different column, table or folder in Excel
- Data transmission via. USB and/or 2 serial COM interfaces
- Flexible and comfortable data transmission
- Activation via:
- Data button on the measuring instrument

A data cable
A computer keyboard
A timer

- Activation a foot switch connected to an USB interface

MARCOM STANDARD SOFTWARE

(included with the USB data cable for free download)

- Features and system requirements are identical to MarCom Professional except that it only has one USB and one serial COM interface

Order No.	Description
4102212	MarCom Professional Software
4102357	Data cable 16 EXu incl. MarCom Standard Software

Order No. 6910205

Order No. 6299054

MarSurf Available Parameters

PARAMETERS FOR MARSURF PS 10 / M 300 / M 300 C

Parameter	Output	Meaning	Standards
Ra	RA	Arithmetic mean roughness Ra	DIN EN ISO 4287 : 1998; ISO 4287 : 1997; JIS B 0601: 2001
Rq	RQ	Root mean square roughness Rq	
Rz Ry (JIS) equiv. to $\mathbf{R z}$	RZ	Mean peak-to-valley height Rz (acc. to ISO) or Ry (acc. to JIS)	
Rz (JIS)	RZJ	Mean height Rz of profile elements	JIS B 0601 : 2001 (früher: ISO 4287/1 : 1984)
Rmax	RMAX	Maximum roughness depth Rmax	DIN 4768 : 1990
Rp	RP	Mean profile peak height Rp	DIN EN ISO 4287 : 1998; ISO 4287 : 1997
RpA (ASME)	RP	Maximum profile peak height Rp	ASME B46
Rpm (ASME)	RPM	Mean profile peak height Rp	
Rpk	RPK	Reduced peak height Rpk	DIN EN ISO 13565-2 : 1998
Rk	RK	Core roughness depth Rk	
Rvk	RVK	Reduced valley depth Rvk	
Mr1	MR1	Smallest material ratio Mr1 of roughness core profile	
Mr2	MR2	Largest material ratio Mr2 of roughness core profile	
A1	A1	Material-filled profile peak area A1	
A2	A2	Lubricant-filled profile valley area A2	
Vo	VO	Oil-retaining volume Vo	
Rt	RT	Total height Rt of R-profile	DIN EN ISO 4287 : 1998
R3z	R3Z	Arithmetic mean third peak-to-valley R3z	DB N 31007 : 1983
RPc	RPC	Peak count RPc is the number of profile elements (see Rsm) per cm that exceed the set upper profile section level c1 and then fall short of the lower c2.	EN 10049 : 2005; ASME B46
Rmr tp (JIS, ASME) equiv. to $\mathbf{R m r}$	RMR	Material ratio Rmr	DIN EN ISO 4287 : 1998; ISO 4287 : 1997; JIS B 0601 : 2001
RSm	RSM	Mean width RSm of profile elements (previously: groove spacing)	
Rsk	RSK	Skewness Rsk of the profile	DIN EN ISO 4287. ASME B46.1
S	S	Mean spacing S of local profile peaks	JIS B 0601: 1994
CR	CR	Zone width CR of the profile peak zone (French „critère de rodage") (dependent on intersection lines Scr1 and Scr2)	cf. Pdc (Pdc) in: DIN EN ISO 4287 : 1998 ISO 4287 : 1997 JIS B 0601 : 2001
CF	CF	Zone width CF of the profile core zone (French "critère de fonctionnement") (dependent on intersection lines Scf1 and Scf2)	
CL	CL	Zone width CL of the profile valley zone (French „critère de lubrification") (dependent on intersection lines Scl1 and Scl2)	
R	R	Mean depth R of roughness motifs	ISO 12085 : 1996
Ar	AR	Mean width Ar of roughness motifs	
Rx	RX	Maximum depth Rx of profile irregularity	

ADDITIONAL PARAMETERS FOR MARSURF M 300 / M 300 C

Rv	Rv	Mean profile valley depth Rv	DIN EN ISO $4287: 1998$ ISO $4287: 1997$ JIS B 0601: 2001
\mathbf{W}	W	Mean depth W of waviness motifs	DIN EN ISO 12085:1998 ISO $12085: 1996$ JS B 0631: 2000

CALIPERS MICRONETERS

INDICATORS S COMPARATOAS
 SNAP

Mahr

EXRCTLY

f픈…

[^0]: * Handheld V-Block

[^1]: * Included with M 300 set
 ** Included with M 300 and M 300 C set

